Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics.

Identifieur interne : 000302 ( Main/Exploration ); précédent : 000301; suivant : 000303

Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics.

Auteurs : Yi Hu [Canada] ; Robert D. Guy [Canada]

Source :

RBID : pubmed:32463123

Abstract

After root uptake, nitrate is effluxed back to the medium, assimilated locally, or translocated to shoots. Rooted black cottonwood (Populus trichocarpa) scions were supplied with a NO3- -based (0.5 mM) nutrient medium of known isotopic composition (δ15 N), and xylem sap was collected by pressure bombing. To establish a sampling protocol, sap was collected from lower and upper stem sections at 0.1-0.2 MPa above the balancing pressure, and after increasing the pressure by a further 0.5 MPa. Xylem sap from upper stem sections was partially diluted at higher pressure. Further analysis was restricted to sap obtained from intact shoots at low pressure. Total-, NO3- -N and, by difference, organic-N concentrations ranged from 6.1-11.0, 1.2-2.4, and 4.6-9.4 mM, while discrimination relative to the nutrient medium was -6.3 to 0.5‰, -23.3 to -11.5‰ and - 1.3 to 4.9‰, respectively. There was diurnal variation in δ15 N of total- and organic-N, but not NO3- . The difference in δ15 N between xylem NO3- and organic-N suggests that discrimination by nitrate reductase is near 25.1 ± 1.6‰. When this value was used in an isotope mass balance model, the predicted xylem sap NO3- -N to total-N ratio closely matched direct measurement.

DOI: 10.1111/pce.13809
PubMed: 32463123


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics.</title>
<author>
<name sortKey="Hu, Yi" sort="Hu, Yi" uniqKey="Hu Y" first="Yi" last="Hu">Yi Hu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guy, Robert D" sort="Guy, Robert D" uniqKey="Guy R" first="Robert D" last="Guy">Robert D. Guy</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32463123</idno>
<idno type="pmid">32463123</idno>
<idno type="doi">10.1111/pce.13809</idno>
<idno type="wicri:Area/Main/Corpus">000284</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000284</idno>
<idno type="wicri:Area/Main/Curation">000284</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000284</idno>
<idno type="wicri:Area/Main/Exploration">000284</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics.</title>
<author>
<name sortKey="Hu, Yi" sort="Hu, Yi" uniqKey="Hu Y" first="Yi" last="Hu">Yi Hu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guy, Robert D" sort="Guy, Robert D" uniqKey="Guy R" first="Robert D" last="Guy">Robert D. Guy</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">After root uptake, nitrate is effluxed back to the medium, assimilated locally, or translocated to shoots. Rooted black cottonwood (Populus trichocarpa) scions were supplied with a NO
<sub>3</sub>
<sup>-</sup>
-based (0.5 mM) nutrient medium of known isotopic composition (δ
<sup>15</sup>
N), and xylem sap was collected by pressure bombing. To establish a sampling protocol, sap was collected from lower and upper stem sections at 0.1-0.2 MPa above the balancing pressure, and after increasing the pressure by a further 0.5 MPa. Xylem sap from upper stem sections was partially diluted at higher pressure. Further analysis was restricted to sap obtained from intact shoots at low pressure. Total-, NO
<sub>3</sub>
<sup>-</sup>
-N and, by difference, organic-N concentrations ranged from 6.1-11.0, 1.2-2.4, and 4.6-9.4 mM, while discrimination relative to the nutrient medium was -6.3 to 0.5‰, -23.3 to -11.5‰ and - 1.3 to 4.9‰, respectively. There was diurnal variation in δ
<sup>15</sup>
N of total- and organic-N, but not NO
<sub>3</sub>
<sup>-</sup>
. The difference in δ
<sup>15</sup>
N between xylem NO
<sub>3</sub>
<sup>-</sup>
and organic-N suggests that discrimination by nitrate reductase is near 25.1 ± 1.6‰. When this value was used in an isotope mass balance model, the predicted xylem sap NO
<sub>3</sub>
<sup>-</sup>
-N to total-N ratio closely matched direct measurement.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32463123</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13809</ELocationID>
<Abstract>
<AbstractText>After root uptake, nitrate is effluxed back to the medium, assimilated locally, or translocated to shoots. Rooted black cottonwood (Populus trichocarpa) scions were supplied with a NO
<sub>3</sub>
<sup>-</sup>
-based (0.5 mM) nutrient medium of known isotopic composition (δ
<sup>15</sup>
N), and xylem sap was collected by pressure bombing. To establish a sampling protocol, sap was collected from lower and upper stem sections at 0.1-0.2 MPa above the balancing pressure, and after increasing the pressure by a further 0.5 MPa. Xylem sap from upper stem sections was partially diluted at higher pressure. Further analysis was restricted to sap obtained from intact shoots at low pressure. Total-, NO
<sub>3</sub>
<sup>-</sup>
-N and, by difference, organic-N concentrations ranged from 6.1-11.0, 1.2-2.4, and 4.6-9.4 mM, while discrimination relative to the nutrient medium was -6.3 to 0.5‰, -23.3 to -11.5‰ and - 1.3 to 4.9‰, respectively. There was diurnal variation in δ
<sup>15</sup>
N of total- and organic-N, but not NO
<sub>3</sub>
<sup>-</sup>
. The difference in δ
<sup>15</sup>
N between xylem NO
<sub>3</sub>
<sup>-</sup>
and organic-N suggests that discrimination by nitrate reductase is near 25.1 ± 1.6‰. When this value was used in an isotope mass balance model, the predicted xylem sap NO
<sub>3</sub>
<sup>-</sup>
-N to total-N ratio closely matched direct measurement.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guy</LastName>
<ForeName>Robert D</ForeName>
<Initials>RD</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2573-8226</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>China Scholarship Council</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">black cottonwood</Keyword>
<Keyword MajorTopicYN="N">isotope discrimination</Keyword>
<Keyword MajorTopicYN="N">nitrate reductase</Keyword>
<Keyword MajorTopicYN="N">nitrogen isotopes</Keyword>
<Keyword MajorTopicYN="N">nitrogen uptake and assimilation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32463123</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13809</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Altieri, K. E., Hastings, M. G., Peters, A. J., Oleynik, S., & Sigman, D. M. (2014). Isotopic evidence for a marine ammonium source in rainwater at Bermuda. Global Biogeochemical Cycles, 28, 1066-1080.</Citation>
</Reference>
<Reference>
<Citation>Amundson, R., Austin, A. T., Schuur, E. A. G., Yoo, K., Matzek, V., Kendall, C., … Baisden, W. T. (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 17, 1031.</Citation>
</Reference>
<Reference>
<Citation>Carlisle, E., Yarnes, C., Toney, M. D., & Bloom, A. J. (2014). Nitrate reductase 15N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus Niger, Pichea angusta, and Escherichia coli. Frontiers in Plant Science, 5, 317.</Citation>
</Reference>
<Reference>
<Citation>Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., & Hilkert, A. (2002). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 74, 4905-4912.</Citation>
</Reference>
<Reference>
<Citation>Cawse, P. A. (1967). The determination of nitrate in soil solutions by ultraviolet spectrophotometry. Analyst, 92, 311-315.</Citation>
</Reference>
<Reference>
<Citation>Cui, J., Lamade, E., Fourel, F., & Tcherkez, G. (2020). δ15N values in plants is determined by both nitrate assimilation and circulation. New Phytologist, 226, 1696-1707.</Citation>
</Reference>
<Reference>
<Citation>Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507-559.</Citation>
</Reference>
<Reference>
<Citation>Dluzniewska, P., Gessler, A., Kopriva, S., Strnad, M., Novák, O., Dietrich, H., & Rennenberg, H. (2006). Exogenous supply of glutamine and active cytokinin to the roots reduces NO3− uptake rates in poplar. Plant, Cell & Environment, 29, 1284-1297.</Citation>
</Reference>
<Reference>
<Citation>Escher, P., Eiblmeier, M., Hetzger, I., & Rennenberg, H. (2004). Spatial and seasonal variation in amino compounds in the xylem sap of a mistletoe (Viscum album) and its hosts (Populus spp. and Abies alba). Tree Physiology, 24, 639-650.</Citation>
</Reference>
<Reference>
<Citation>Evans, R. D. (2001). Physiological mechanisms influencing nitrogen isotope composition. Trends in Plant Science, 6, 121-126.</Citation>
</Reference>
<Reference>
<Citation>Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503-537.</Citation>
</Reference>
<Reference>
<Citation>Geßler, A., Schneider, S., Weber, P., Hanemann, U., & Rennenberg, H. (1998). Soluble N compounds in trees exposed to high loads of N: A comparison between the roots of Norway spruce (Picea abies) and beech (Fagus sylvatica) trees grown under field conditions. New Phytologist, 138, 385-399.</Citation>
</Reference>
<Reference>
<Citation>Glass, A. D. M., Britto, D. T., Kaiser, B. N., Kinghorn, J. R., Kronzucker, H. J., Kumar, A., … Vidmar, J. J. (2002). The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany, 53, 855-864.</Citation>
</Reference>
<Reference>
<Citation>Handley, L. L., & Raven, J. A. (1992). The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant, Cell & Environment, 15, 965-985.</Citation>
</Reference>
<Reference>
<Citation>Johnson, C. M., Stout, P. R., Broyer, T. C., & Carlton, A. B. (1957). Comparative chlorine requirements of different plant species. Plant and Soil, 8, 337-353.</Citation>
</Reference>
<Reference>
<Citation>Kalcsits, L. A., Buschhaus, H. A., & Guy, R. D. (2014). Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants. Physiologia Plantarum, 151, 293-304.</Citation>
</Reference>
<Reference>
<Citation>Kalcsits, L. A., & Guy, R. D. (2013a). Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana. Physiologia Plantarum, 149, 249-259.</Citation>
</Reference>
<Reference>
<Citation>Kalcsits, L. A., & Guy, R. D. (2013b). Quantifying remobilization of pre-existing nitrogen from cuttings to new growth of woody plants using 15N at natural abundance. Plant Methods, 9, 27.</Citation>
</Reference>
<Reference>
<Citation>Kalcsits, L. A., & Guy, R. D. (2016a). Variation in fluxes estimated from nitrogen isotope discrimination corresponds with independent measures of nitrogen flux in Populus balsamifera L. Plant, Cell & Environment, 39, 310-319.</Citation>
</Reference>
<Reference>
<Citation>Kalcsits, L. A., & Guy, R. D. (2016b). Genotypic variation in nitrogen isotope discrimination in Populus balsamifera L. clones grown with either nitrate or ammonium. Journal of Plant Physiology, 201, 54-61.</Citation>
</Reference>
<Reference>
<Citation>Kalcsits, L. A., Min, X., & Guy, R. D. (2015). Interspecific variation in leaf-root differences in δ15N among three tree species grown with either nitrate or ammonium. Trees, 29, 1069-1078.</Citation>
</Reference>
<Reference>
<Citation>Karsh, K. L., Granger, J., Kritee, K., & Sigman, D. M. (2012). Eukaryotic assimilatory nitrate reductase fractionates N and O isotopes with a ratio near unity. Environmental Science & Technology, 46, 5727-5735.</Citation>
</Reference>
<Reference>
<Citation>Ledgard, S. F., Woo, K. C., & Bergersen, F. J. (1985). Isotopic fractionation during reduction of nitrate and nitrite by extracts of spinach leaves. Functional Plant Biology, 12, 631-640.</Citation>
</Reference>
<Reference>
<Citation>Liu, X. Y., Koba, K., Makabe, A., & Liu, C. Q. (2014). Nitrate dynamics in natural plants: Insights based on the concentration and natural isotope abundances of tissue nitrate. Frontiers in Plant Science, 5, 355.</Citation>
</Reference>
<Reference>
<Citation>Lupi, C., Morin, H., Deslauriers, A., Rossi, S., & Houle, D. (2013). Role of soil nitrogen for the conifers of the boreal forest: A critical review. International Journal of Plant & Soil Science, 2, 155-189.</Citation>
</Reference>
<Reference>
<Citation>Matt, P., Geiger, M., Walch-Liu, P., Engels, C., Krapp, A., & Stitt, M. (2001). The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: A major imbalance between the rate of nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period. Plant, Cell & Environment, 24, 177-190.</Citation>
</Reference>
<Reference>
<Citation>Millard, P., Wendler, R., Grassi, G., Grelet, G. A., & Tagliavini, M. (2006). Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization. Tree Physiology, 26, 527-536.</Citation>
</Reference>
<Reference>
<Citation>Min, X., Siddiqi, M. Y., Guy, R. D., Glass, A. D. M., & Kronzucker, H. J. (2002). A comparative study of fluxes and compartmentation of nitrate and ammonium in early-successional tree species. Plant, Cell & Environment, 22, 821-830.</Citation>
</Reference>
<Reference>
<Citation>Näsholm, T., Ekblad, A., Nordin, A., Giesler, R., Högberg, M., & Högberg, P. (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914-916.</Citation>
</Reference>
<Reference>
<Citation>Needoba, J. A., Sigman, D. M., & Harrison, P. J. (2004). The mechanism of isotope fractionation during algal nitrate assimilation as illuminated by the 15N/14N of intracellular nitrate. Journal of Phycology, 40, 517-522.</Citation>
</Reference>
<Reference>
<Citation>Nordin, A., Högberg, P., & Näsholm, T. (2001). Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia, 129, 125-132.</Citation>
</Reference>
<Reference>
<Citation>Oh, K., Kato, T., & Xu, H. L. (2008). Transport of nitrogen assimilation in xylem vessels of green tea plants fed with NH4-N and NO3-N. Pedosphere, 18, 222-226.</Citation>
</Reference>
<Reference>
<Citation>Olleros-Izard T. (1983) Kinetische Isotopeneffekte der Arginase und Nitratreduktase Reaktion: ein Betrag zur Aufklärung der entsprechenden Reaktionmechanismen. (PhD thesis), Technischen Universität München, Freising-Weihenstephan.</Citation>
</Reference>
<Reference>
<Citation>Ono, F., Frommer, W. B., & von Wirén, N. (2000). Coordinated diurnal regulation of low- and high-affinity nitrate transporters in tomato. Plant Biology, 2, 17-23.</Citation>
</Reference>
<Reference>
<Citation>Peuke, A. D., Gessler, A., & Tcherkez, G. (2013). Experimental evidence for diel δ15N-patterns in different tissues, xylem and phloem saps of castor bean (Ricinus communis L.). Plant, Cell & Environment, 36, 2219-2228.</Citation>
</Reference>
<Reference>
<Citation>Ramarao, C. S., Srinivasan, & Naik, M. S. (1981). Origin of reductant for reduction of nitrate and nitrite in rice and wheat leaves in vivo. New Phytologist, 87, 517-525.</Citation>
</Reference>
<Reference>
<Citation>Ribas-Carbo, M., Still, C., & Berry, J. (2002). Automated system for simultaneous analysis of δ13C, δ18O and CO2 concentrations in small air samples. Rapid Communications in Mass Spectrometry, 16, 339-345.</Citation>
</Reference>
<Reference>
<Citation>Robinson, D. (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution, 16, 153-162.</Citation>
</Reference>
<Reference>
<Citation>Robinson, D., Handley, L. L., & Scrimgeour, C. M. (1998). A theory for 15N/14N fractionation in nitrate-grown vascular plants. Planta, 205, 397-406.</Citation>
</Reference>
<Reference>
<Citation>Schneider, S., Geßler, A., Weber, P., Sengbusch, D. V., Hanemann, U., & Rennenberg, H. (1996). Soluble N compounds in trees exposed to high loads of N: A comparison of spruce (Picea abies) and beech (Fagus sylvatica) grown under field conditions. New Phytologist, 134, 103-114.</Citation>
</Reference>
<Reference>
<Citation>Siebrecht, S., & Tischner, R. (1999). Changes in the xylem exudate composition of poplar (Populus tremula x P. alba)-Dependent on the nitrogen and potassium supply. Journal of Experimental Botany, 50, 1797-1806.</Citation>
</Reference>
<Reference>
<Citation>Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., & Böhlke, J. K. (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry, 73, 4145-4153.</Citation>
</Reference>
<Reference>
<Citation>Tcherkez, G. (2011). Natural 15N/14N isotope composition in C3 leaves: Are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites? Functional Plant Biology, 38(1), 12.</Citation>
</Reference>
<Reference>
<Citation>Tcherkez, G., & Farquhar, G. D. (2006). Isotopic fractionation by plant nitrate reductase, twenty years later. Functional Plant Biology, 33, 531-537.</Citation>
</Reference>
<Reference>
<Citation>Tegeder, M., & Masclaux-Daubresse, C. (2018). Source and sink mechanisms of nitrogen transport and use. New Phytologist, 217, 35-53.</Citation>
</Reference>
<Reference>
<Citation>von Wirén, N., Lauter, F. R., Ninnemann, O., Gillissen, B., Walch-Liu, P., Engels, C., … Frommer, W. B. (2000). Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. The Plant Journal: For Cell and Molecular Biology, 21, 167-175.</Citation>
</Reference>
<Reference>
<Citation>Yoneyama, T., Ito, O., & Engelaar, W. M. (2003). Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochemistry Reviews, 2, 121-132.</Citation>
</Reference>
<Reference>
<Citation>Yoneyama, T., Kamachi, K., Yamaya, T., & Mae, T. (1993). Fractionation of nitrogen isotopes by glutamine synthetase isolated from spinach leaves. Plant and Cell Physiology, 34, 489-491.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Hu, Yi" sort="Hu, Yi" uniqKey="Hu Y" first="Yi" last="Hu">Yi Hu</name>
</region>
<name sortKey="Guy, Robert D" sort="Guy, Robert D" uniqKey="Guy R" first="Robert D" last="Guy">Robert D. Guy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000302 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000302 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32463123
   |texte=   Isotopic composition and concentration of total nitrogen and nitrate in xylem sap under near steady-state hydroponics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32463123" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020